World Rural Health Conference
Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 3258
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 8  |  Issue : 12  |  Page : 3850-3853  

Assessment of stereo acuity levels using random dot stereo acuity chart in college students


Department of Optometry, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, India

Date of Submission10-Sep-2019
Date of Decision11-Sep-2019
Date of Acceptance09-Oct-2019
Date of Web Publication10-Dec-2019

Correspondence Address:
B M. S. Deepa
Department of Optometry, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jfmpc.jfmpc_755_19

Rights and Permissions
  Abstract 


Background and Aims: Watching 3D images are known to induce more ocular, systemic fatigue and discomfort, which can be referred to as '3D asthenopia', than watching two-dimensional (2D) images. This study was designed to determine the stereo acuity levels among college students and compare it with the hours of use of digital technology. Methods: University students in the age group of 18-25 years were screened for visual acuity for distance and near. Refraction was done to find the presence of refractive errors. Those students who had no vergence or accommodation dysfunction and orthophoria were only included in the study. Stereopsis was assessed using random dot stereo acuity chart. The stereo acuity results were grouped as either normal (20 arc seconds or better), Borderline (25 arc seconds to 40 arc seconds) and reduced stereopsis (50 arc seconds to 400 arc seconds). Students were also questioned about the hours of use of digital media. Results: The average age of the 246 participates was 20 ± 1.9 years with 78 (32%) were males and 168 (68%) were females. 7% of the population was found to be myopic in our study. The hours of use of digital technology ranged from 0-9 hours a day. Only 13.1% of the student's population met the normal level of stereopsis (20 arc seconds). Around 44.3% of the study population was found to have borderline stereopsis. Also 42.6% of the study population, reduced stereopsis was found. Among the reduced stereo acuity levels, we found stereoacuity levels as low as 100-200 arc seconds were found in nearly 17.6% of the study population. Conclusion: It is very much evident from this study that a large group of college students are not enjoying the highest level of binocular vision, which in turn can have a negative impact on their academic performance.

Keywords: Asthenopia, binocular vision, digital technology, randot stereo acuity test chart, stereo acuity


How to cite this article:
Deepa B M, Valarmathi A, Benita S. Assessment of stereo acuity levels using random dot stereo acuity chart in college students. J Family Med Prim Care 2019;8:3850-3

How to cite this URL:
Deepa B M, Valarmathi A, Benita S. Assessment of stereo acuity levels using random dot stereo acuity chart in college students. J Family Med Prim Care [serial online] 2019 [cited 2020 Jan 22];8:3850-3. Available from: http://www.jfmpc.com/text.asp?2019/8/12/3850/272491




  Introduction Top


Stereopsis is the depth perception of relative farness and nearness of objects where in there is small horizontal disparity that is present with fused retinal images. This small horizontal disparity is expressed as threshold disparity in terms of the angle subtended (seconds of arc) at the nodal point of the eye.[1],[2] Measurements of threshold stereoacuity provide accurate information on the extent of binocular integration.[3],[4] Stereotests provides accurate and repeatable measures of stereo acuity, in order to facilitate a basic vision function and binocularity. The assessment of binocular vision is an integral part of the orthoptic assessment, with the results having significant implications in terms of management and diagnostic decisions. In addition, stereopsis is important to many areas of life, such as motor skills, employment and education prospects.[5],[6],[7]

Reduced stereo acuity impinges on reading small prints, reading newspapers, pressing telephone numbers, performing handicraft/sewing, writing a check/letter/filling a form, and also influences employment and education prospects. Digital Technology has become an ever present influence on our lives. It has enormous benefit of instant communication and easy access to loads of information. Smart phones are the most common device (63%). According to AOA American Eye-Q Survey 2014, 42% spend greater than 3 hours per day with computers/devices. With the advent of 3D theaters as well as 3D television and computers, a noticeable increase in exposure to 3D images has set in. Watching 3D images are known to induce more ocular and systemic fatigue and discomfort, which can be referred to as '3D asthenopia', than watching two-dimensional (2D) images. There is an adverse influence of the extensive near vision demands imposed by smart phones. There is no safety guidelines for 3D display watching as such.[8] Previous study by SH Kim et al. has found the influence of the stereopsis and abnormal binocular vision on ocular and systemic discomfort while watching 3D television.[9]

There are several stereoacuity tests available like Titmus, Frisby, Lang, TNO stereotests. All of these tests fail to eliminate completely non-stereoscopic (monocular) depth cues and therefore, are unreliable in the accurate assessment of anomalous stereopsis. Monocular depth cues could arise from accommodation, perspective, shadows and motion parallax (caused either by head or test surface movement).[10] Random Dot stereo test is considered to be the superior to other tests and it has no monocular cues. It is limited by disparities within panum's zone. Random Dot stereo test is 10 times sensitive than other stereotest in Contour Discrimination.[11] For performance of various tasks the medical and non-medical students use virtual images of 3D media, online modules, e-learning with 3Dcomplex images which has high impact on the real depth perception of stereopsis. Moreover the demand for better stereopsis is greater among the University studying students. The visual system is biologically unsuited for the sustained near work demands of our culture. Hence this clinical study was undertaken to determine the stereo acuity levels among college students and compare it with their hours of use of digital technology.


  Methods Top


A cross-sectional study was done among the University undergraduate medical students. The study period was between August-December 2017. The total number of students in the study were 246. Inclusion criteria were students between the age group of 18-25 years of both genders. History of chronic systemic illness, anyone using medications against systemic diseases, smokers, alcoholics, any subjects on psychoactive substance use and anyone known psychiatric illness were excluded from the study. Ethical approval was obtained 10, July 2017.

Stereopsis was assessed using Random Dot 2 Stereo Acuity test chart. Slide projectors were used to present random dot targets with equally matched luminance levels at crossed disparities ranging from 400 to 12.5 sec arc at a test distance of 40 cms. The random dot stimulus appeared as a large ring in either the right or left screen. The visual angle of the overall ring at 40 cm was 12.7°, with the edges subtending 3.6° and the central circle subtending 5.7°. The angular subtence of the dots in the pattern was 3 min arc. No Monocular cues were visible when the Polaroid glasses are worn. The screen without the stimulus projected random dot pattern with no disparity (stereo blank). Disparity levels of the stimuli included 400, 200, 160, 100, 63, 50, 40, 32, 25, 20, 16, 12.5 sec arc with the density of each slide matched to its stereo blank. All stereopsis angles were calibrated to within 1.50 sec arc of the targeted angles when viewed on the projector.

Distance and near cover test in the nine positions of gaze to determine the presence of heterophorias. Distance and near visual acuity were assessed and documented. Retinoscopy and subjective refraction performed to determine the refractive errors. Near point of convergence was measured using pencil push up method, both subjectively and objectively. Amplitude of accommodation was measured monocularly and binocularly using the push up method. To rule out presence of any gross vergence or accommodation anomalies, amplitude of accommodation and near point of convergence were assessed. A short questionnaire pertaining to the socioeconomic status, hours of near work and the type of digital technology/gadgets used regularly were ascertained. A color vision test using ishihara colour vision test plates were performed. Direct Ophthalmoscopy was performed to rule out any specific ocular disorder.

Data Analysis: Data was analyzed using the SPSS statistical program (IBM SPSS statistics 21). Pearson chi square test being analysed for the clinical significance to be found in the comparison of the duration of use of digital media and the stereoacuity levels. For discerning the clinical significance the stereo acuity levels were categorized into normal (20 arc seconds or better), Borderline (25 arc seconds to 40 arc seconds) and Reduced stereopsis (50 arc seconds to 400 arc seconds).


  Results Top


The average age of the participant's was 20 ± 1.9 years. Of the 246 students, 78 were males and 168 were females. 7% of the study population was found to be myopic in our study. The hours of use of digital technology ranged from 0 to 8 hours a day. Only 13.1% of the student's population met the normal level of stereopsis (20 arc seconds). Around 44.3% of the study population was found to have borderline stereopsis. Also 42.6% (n = 105) of the study population were found to have reduced stereopsis. Of the 105 students with reduced stereo acuity levels, 17.6% were found to have stereopsis as low as 100-200 arc seconds [Figure 1].
Figure 1: Stereo acuity of study population

Click here to view


A tabular column which illustrates the distribution of the stereo acuity levels among the students who have used digital media less than or equal to 4 hours and more than 4 hours [Table 1]. Based on the hours of near work, it was found that 120 students had spent less than 4 hours of using digital technology and the rest 126 had usually spent more than 4 hours with digital technology. 48.3% of the students who had spent less than or equal to 4 hours with digital technology, and 37.0% among those who had spent more than 4 hours with digital technology were found to have reduced stereopsis. The correlation between stereo acuity levels and hours of use of digital technology shows a P value of 0.05%.
Table 1: Stereoacuity levels comparison

Click here to view



  Discussion Top


Initially eyes capture the images of objects in two dimensions then the brain interprets the images through physiological mechanisms of the visual cortex and finally stereopsis occurs. The difference in the position of images of the left and right retinas are being measured in visual angles units of degrees or minutes of arc. Thus a normal binocular visual system with intact fusional mechanism is necessary to properly experience a 3D display. Clinically applicable tests of stereopsis have the potential to provide an overall assessment of refractive state, optical clarity, and contrast sensitivity and binocularity in a single test.[12],[13] This is the first study in the Indian University population for the assessment of stereopsis in adults. Previously Ogle [3] reported that the mean adult near stereo-acuity of subjects with normal binocular vision is 20 seconds of arc with a standard deviation of 10 seconds of arc. In his study, 95% of the normal population had stereo-acuity thresholds of 40 seconds of arc. However in our study population, normal stereo acuity of 20 arc seconds was found in 13.1% and near to normal that is borderline of upto 40 arc seconds in 44.3%. The higher stereo acuity levels were enjoyed by people 60 years before. However, in the current scenario, this percentage is significantly reduced.

Stereopsis performance has two factors: the recognition speed factor which quantifies the complexity by the promptness of response for a disparity, and the robustness which quantifies the confidence of responses for a disparity. When the speed and robustness are delayed the stereoacuity levels are reduced. 3D technology has impact on the visual system like visual discomfort which causes three unnatural disturbances.[14] First are the excessive screen disparities too large for fusion. The second is the stereopsis distortion wherein either objects appear farther away than the fusional area or the images or parts of images for one eye is passed through the other eye that are seen as ghosting artefacts. The third is the Vergence-Accommodation mechanism.[14] These two mechanisms have to work smoothly to perceive objects clearly at a fixation distance. These performances and unnatural disturbances are the causes that definitely impacts on the stereoacuity to be reduced. Moreover, there are several others factors which influence the stereopsis such as looming, motion parallax, and the kinetic depth effect and pictorial depth cues such as occlusion, perspective, texture gradients, relative size, and height in visual field, shadow, luminance, and aerial perspective.[4],[5] Because of these factors, there exists the distribution of reduced stereopsis in both the groups of students who used digital technology as illustrated in the [Table 1]. The amount of hours of digital technology use and stereoacuity levels had no statistical significance (P = 0.05%).

Stereo acuity is the smallest amount of horizontal retinal image disparity [measured in arc seconds] giving rise to perception of relative depth or stereopsis. Monocular depth information may be sufficient for locating a target at near, however, when the target is at a distance within 2 to 3 m, more binocular depth information is required for directing daily activities, including driving and walking. Stereopsis is more important than acuity which is associated with the quality of life in all aspects of human life especially since many cataract patients have relatively good acuity at baseline. Stereopsis is used to perform a highly skilled real-world motor task essential for the occupational practice of dentistry. The clinical diagnosis of dental caries, the estimation of correct convergence in crown preparation, oral radiography interpretation and in controlling various cavity preparations. Invasive surgery is used in various specialties, requiring a novel set of motor skills and adaptation to a different viewing condition. Stereoacuity is important for all occupations such as pilot, tailoring etc. Stereopsis if reduced, then individuals are not eligible for certain professions like pilot etc. Factors affecting development of stereopsis are ocular conditions such as ametropia, aniseikonia, amblyopia, strabismus, nystagmus, aphakia, and monovision and monofixation syndrome. It is important that quality of life is dependent on the amount of stereopsis a person relatively present.[15],[16]


  Conclusion Top


This study concludes that within college groups of students, a large numbers of students do not enjoy the highest level of binocular vision. Which could therefore be a major reason for them not performing best in their academic performance and consequently having a negative impact on their careers. This results put forth the importance of routine screening of stereo acuity levels in college students. Certain limitations to be noted in our study are that we had introduced a single question of amount of hour's digital technology. A future study can be done by use a particular amount of duration of digital technology, which can be constantly maintained so that pre- and post-stereopsis can be measured.

Our study findings were limited by the small sample size. A large study population has to be chosen to bring in more light and significance of the stereopsis. A survey with questionnaires in order to clearly differentiate the symptomatic and asymptomatic students whether they possess any ocular and systemic related discomfort present and finally measure the degree of stereopsis. Further dynamic stereoacuity assessment can be made with 3D stereoscopic entertainment in the future.

Financial support and sponsorship

Nil.

Conflict of interest

There is no conflict of interest.



 
  References Top

1.
Bishop PO. Binocular vision. In: Moses RA, editor. Adler's Physiology of the Eye, Clinical Application. 8th ed. St Louis: CV Mosby; 1987. p. 619-89.  Back to cited text no. 1
    
2.
Peterson SD, Axholt M, Ellis SR. Objective and subjective assessment of stereoscopically separated labels in augmented reality. Comput and Graph 2009;33:23-33.  Back to cited text no. 2
    
3.
Ogle KN. Researches in Binocular Vision. Philadelphia: WB Saunders Co; 1950.  Back to cited text no. 3
    
4.
Allison RS, Gillam BJ, Vecellio E. Binocular depth discrimination and estimation beyond interaction space. J Vis 2009;9:10-4.  Back to cited text no. 4
    
5.
Julesz B. Stereoscopic vision. Vis Res 1986;26:1601-12.  Back to cited text no. 5
    
6.
Julesz, B. Foundations of Cyclopean Perception. Chicago: University of Chicago Press; 1971.  Back to cited text no. 6
    
7.
Mantovani G, Riva R, Galimberti C. VR learning: Potential and challenges for the use of 3D. Towards cyberpsychology: Mind, cognitions, and society in the Internet age. BG Amsterdam, The Netherlands: IOS Press; 2003. p. 208-25.  Back to cited text no. 7
    
8.
Howarth PA. Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: A review. Ophthalmic Physiol Opt 2011;31:111-22.  Back to cited text no. 8
    
9.
Kim SH, Suh YW, Yun C, Yoo EJ, Yeom JH, Cho YA. Influence of stereopsis and abnormal binocular vision on ocular and systemic discomfort while watching 3D television. Eye 2013;27:1243-8.  Back to cited text no. 9
    
10.
Sowden P, Davies I, Rose D, Kaye M. Perceptual learning of stereoacuity. Perception 1996;25:1043-52.  Back to cited text no. 10
    
11.
Paulette P Schmidt. Sensitivity of Random Dot stereoacuity and snellen acuity to optical blur. Opt Vis Sci 1994;71:466-71.  Back to cited text no. 11
    
12.
Fricke TR, Siderov J. Stereopsis, stereotests, and their relation to vision screening and clinical practice. Clin Exp Optom 1997;80:165-72.  Back to cited text no. 12
    
13.
Fricke TR, Siderov J. Stereopsis, stereotests, and their relation to vision screening and clinical practice. Clin Exp Optoin 1997;80:165-72.  Back to cited text no. 13
    
14.
Paulus J, Tong J, Hornegger J, Schmidt M, Eskofier B, Michelson G. Extended stereopsis evaluation of professional and amateur soccer players and subjects without soccer background. Front Psychol 2014;5:1186.  Back to cited text no. 14
    
15.
Datta S, Foss AJ, Grainge MJ, Gregson RM, Zaman A, Masud T, et al. The importance of acuity, stereopsis, and contrast sensitivity for health-related quality of life in elderly women with cataracts. Invest Ophthalmol Vis Sci 2008;49:1-6.  Back to cited text no. 15
    
16.
Elliott DB, Patla AE, Furniss M, Adkin A. Improvements in clinical and functional vision and quality of life after second eye cataract surgery. Optom Vis Sci 2000;77:13-24.  Back to cited text no. 16
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1]



 

Top
   
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
   Abstract
  Introduction
  Methods
  Results
  Discussion
  Conclusion
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed205    
    Printed4    
    Emailed0    
    PDF Downloaded33    
    Comments [Add]    

Recommend this journal