World Rural Health Conference
Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 3042
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 8  |  Issue : 5  |  Page : 1602-1606  

Elevated levels of Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, epidermal growth factor, and β2-microglobulin levels in gingival crevicular fluid during human Orthodontic tooth movement (OTM)


1 Department of Orthodontics and Dentofacial Orthopedics, Kothiwal Dental College and Research Center, Mora Mustaqueem, Moradabad, Uttar Pradesh, India
2 Department of Prosthodontics, Dental Institute, RIMS, Ranchi, Jharkhand, India
3 Department of Dentistry, University College of Medical Sciences and Guruteg Bahadur Hospital, Dilshad Garden, Delhi, India
4 Consultant Orthodontist, Department of Orthodontics and Dentofacial Orthopedics, Phoenix Hospital, Panchkula, Haryana, India
5 Consultant Orthodontist, Department of Orthodontics and Dentofacial Orthopedics, Ambedkar Marg, Rajnagar Extension II, Palam Colony, New Delhi, India
6 Consultant Orthodontist, Department of Orthodontics and Dentofacial Orthopedics, Jalagaon, Maharashtra, India

Date of Web Publication31-May-2019

Correspondence Address:
Dr. Poonam K Jayaprakash
Department of Orthodontics and Dentofacial Orthopedics, Kothiwal Dental College and Research Center, Mora Mustaqueem, Moradabad - 244 001, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jfmpc.jfmpc_204_19

Rights and Permissions
  Abstract 


Aim: The aim of this study was to identify and quantify the various cytokines in human gingival crevicular fluid (GCF), and to investigate the changes in their levels during orthodontic tooth movement (OTM). Materials and Methods: A statistically significant no. of subjects (n = 10 and mean age = 15.6 years) were included in the study. A maxillary cuspid of each subject having one treatment for distal orthodontic tooth movement served as the experimental tooth, whereas the contralateral cuspids were used as controls. Gingival crevicular fluid (GCF) around the experimental and the two control teeth was collected from each subject immediately before activation, and at 1, 24, and 168 hours after the initiation of tooth movement. Result: ELISAs were used to determine cytokine levels. The concentrations of interleukin (IL)-1lβ, IL-6, tumor necrosis factor-α, epidermal growth factor, and β2-microglobulin were significantly higher in the experimental group than in the controls at 24 hr after the experiment was initiated. All the cytokines remained at baseline levels throughout the experiment for the control groups. Conclusion: Since all cytokines in GCF play an important role in the bone remodelling processes in vivo, the present results indicate that the changes in cytokines in GCF are associated with OTM.

Keywords: EGF, IL1β, IL-6, TNF-α, β2-MG orthodontic tooth movement


How to cite this article:
Jayaprakash PK, Basavanna JM, Grewal H, Modi P, Sapawat P, Bohara PD. Elevated levels of Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, epidermal growth factor, and β2-microglobulin levels in gingival crevicular fluid during human Orthodontic tooth movement (OTM). J Family Med Prim Care 2019;8:1602-6

How to cite this URL:
Jayaprakash PK, Basavanna JM, Grewal H, Modi P, Sapawat P, Bohara PD. Elevated levels of Interleukin (IL)-1β, IL-6, tumor necrosis factor-α, epidermal growth factor, and β2-microglobulin levels in gingival crevicular fluid during human Orthodontic tooth movement (OTM). J Family Med Prim Care [serial online] 2019 [cited 2019 Jun 19];8:1602-6. Available from: http://www.jfmpc.com/text.asp?2019/8/5/1602/259419




  Introduction Top


The early phase of orthodontic tooth movement (OTM) involves an acute inflammatory response both at biochemical and structural level, characterized by periodontal vasodilatation and the migration of leukocytes out of periodontal ligament (PDL) capillaries.[1] Orthodontic tooth movement (OTM) is regarded as an epiphenomenon of the gene expression of the periodontal ligament (PDL) and surrounding cells resulting from a series of orchestrated cellular and molecular events in alveolar bone and periodontal tissue initiated by the application of orthodontic force.[2] The mechanism of bone resorption may also be related to release of inflammatory mediators, such as prostaglandin E (PGE) and interleukin (IL)-1, which interact with bone cells. Cytokines secreted by leukocytes may interact directly with osteoblasts or indirectly via neighboring cells, such as monocytes/ macrophages, lymphocytes, and fibroblasts, through their production of cytokine, or a variety of growth factors. A chemical cascade that mediates the transmission of signals from extracellular matrix leading to genetic modulation is interceded by the release of mediators in paracrine environment. These signals are responsible for a change in the cytoskeletal structure, leading to alteration of nuclear protein matrix and eventually gene activation or suppression.[3],[4] These events initiate the process of bone remodelling, leading to effective tooth movement. The biochemical mediators released sequentially at multiple stages during orchestration of tooth movement can be detected in gingival crevicular fluid (GCF). GCF is a unique biological exudate that has been found as a convenient medium to study these mediators with reasonable sensitivity. GCF can be collected noninvasively [5] with specifically designed filter paper or a micropipette (1 to 10 μl) or through magnetic beads placed in gingival crevice. Once collected, GCF may be cryopreserved or directly sent for chemical analysis. GCF can also be collected repeatedly at various stages of orthodontic treatment and therefore provides useful insight to biological events over the entire duration of observation. Clinically demonstrable success of OTM is associated with expression of numerous regulatory molecules, of which cytokines have been most widely documented. Cytokines are low-molecular weight proteins (mw <25 kDa) released in autocrine or paracrine environments in response to local signals like application of stress [6] and are involved in normal physiological bone turnover and remodelling.[7],[8],[9] Cytokine biology as a retort to forces applied for OTM is difficult to comprehend due to sheer number and complexity of these factors exhibiting redundancy as well as pleiotropy.[10] Although cytokines have been extensively evaluated in GCF as quantitative biochemical indicators of inflammatory periodontal status,[11] there has been an increasing interest on understanding their contributions as mediators of OTM owing to their role in bone and tissue remodelling. Among these cytokines, interleukins (ILs) (IL-1α, IL-1β, IL-1RA, IL-8, IL-2, IL-6, and IL-15), tumor necrosis factors (TNFs), interferons (IFNs), growth factors (GFs), and colony stimulating factors (CSFs) have been extensively studied in relation to OTM.

Aim

This study was designed to investigate the levels of IL1β, IL-6, TNF-α, EGF, and P2-MG in GCF at 0, 24, and 168 hours after the start of orthodontic treatment, by use of highly sensitive enzyme immunoassays (EIA). The present study demonstrates that cytokines in GCF are rapidly elevated at 24 hours after the orthodontic force is initiated and suggests that these alterations of cytokines are associated with bone remodelling processes occurring during orthodontic tooth movement in vivo.


  Materials and Methods Top


Study population

Ten orthodontic patients (seven females and three males; mean age, 15.6 + 0.9 years) were selected to participate in this study according to the following criteria: (1) good systemic health; (2) not on antibiotic therapy within the past 6 months; (3) no use of anti-inflammatory drugs in the month preceding the study; (4) healthy periodontium, with generalized probing depth of 2 mm and no radiographic evidence of periodontal bone loss; and (5) requirements of first-premolar extraction and canine distal tooth movement as a part of orthodontic treatment. Informed consent was obtained from each patient. The human subject's protocol was reviewed and approved by Institutional Ethical Review Board.

Experimental design

For each subject, a maxillary cuspid undergoing distal orthodontic tooth movement was used as an experimental tooth, and the contralateral cuspids served as control tooth. Orthodontic brackets were placed on the canines. Experimental canines were moved in the distal direction through an archwire by use of an elastic chain exerting an initial force of 250 g. The amount of tooth movement for each tooth was measured with digimaticcalipers. At the distal aspect of experimental and control teeth, GCF was collected for subsequent analysis and the following examinations of the periodontium were conducted: Probing depth, presence or absence of plaque, and bleeding on probing. The collection and examinations were conducted immediately before activation and at 1, 24, and 168 hours after the initiation of tooth movement.

GCF collection

The GCF sampling was performed by the method of Offenbacher et al.[12] GCF was collected from the experimental and control teeth. The tooth was gently washed with water, and the sites under study were isolated with cotton rolls (to minimize contamination from saliva) and gently dried with an air syringe. Paper strips (Periopaper, Harco, Tustin, CA, USA) were carefully inserted 1 mm into the gingival crevice and allowed to remain there for 30 seconds. After a one-minute interval, a second strip was placed at the same site. Care was taken to avoid mechanical injury. The volume of GCF in the periopaper was measured with a Periotron (Harco, Tustin, CA, USA). The paper strips from the individual sites were stored at -30°C until further processing could be carried out.

IL1β, IL-6, TNF-α, EGF, and β2-MG in GCF

To obtain the sample completely from periopaper, we eluted the GCF from the paper strips by centrifugal filtration with aliquots of buffer (50 mm phosphate buffer, pH 7.2, containing protease inhibitors, 0.1 mm phenylmethylsulfonyl fluoride, 50 μg/mL each of leupeptin, pepstatin, and antipain). In brief, 100 μL of the above buffer was applied to each strip and the tube centrifuged at 15,000 g for 5 minutes. A further 100 μL was then applied and the centrifugation repeated. The GCF from the two strips was pooled to give a total volume of 200 μL and then stored at -30°C for later assay. The pilot study for estimation of recovery showed that from 83-91% of the initial amount of bovine serum albumin (BSA) applied could be recovered by our method. Protein concentration of the extract was estimated by the method of Bradford, with BSA as a standard.[13]

The contents of IL-11 and IL-6 in the samples were measured by use of commercially available two-site sandwich ELISA kits. EGF was measured by a two-site ELISA. TNF-α and β2-MG were determined by a sandwich EIA that consisted of solid-phase (polystyrene bead) immobilized antibodies and antibodies labelled with 3-Dgalactosidase, as described previously.[14],[15],[16] All samples and standards were assayed in duplicate.


  Results Top


The amount of tooth movement was 1.2 ± 0.1 mm/168 hours on the average, whereas no movement was detected on the control site. GCF has been co-related with the inflammatory state.[17] As for the volume of GCF samples during orthodontic tooth movement, the mean GCF from the experimental tooth at 24 hours (0.51 ± 0.05μL/2 periopapers) was a little higher than from the experimental site at 24 hours (0.37 ± 0.05 μL/2 periopapers); however, there was no statistically significant difference due to the great variation. In addition, the volume of GCF from around the experimental tooth was similar to that of GCF samples ((0.41 ± 0.05μL/2 periopapers) from healthy subjects.

IL1β, IL-6, TNF-α, EGF, and β2-MG contents in GCF

IL1β: The meanIL1β for experimental teeth at 24 hours was considerably higher compared to baseline (0.89 ± 0.12 pg/μg vs 0.37 ± 0.11 pg/μg, P < 0.05*) and also in contralateral control teeth (0.89 ± 0.12 pg/μg vs 0.34 ± 0.11 pg/μg, P < 0.05*) [Table 1].
Table 1: Mean IL1β results

Click here to view


IL-6: The mean IL-6 value for experimental teeth at 24 hours was considerably higher compared to baseline (0.065 ± 0.005 pg/μg vs 0.030 ± 0.008 pg/μg, p < 0.05*) and also in contralateral control teeth (0.016 ± 0.006 pg/μg vs 0.034 ± 0.0091 pg/μg, p = 0.00145*) [Table 2].
Table 2: Mean IL 6 results

Click here to view


TNF-α: The mean TNF-αfor experimental teeth at 24 hours was considerably higher compared to baseline (1.18 ± 0.05 pg/μg vs 0.43 ± 0.15 pg/μg, p < 0.05*) and also in contralateral control teeth (0.45 ± 0.12 pg/μg vs 0.34 ± 0.11 pg/μg, p < 0.05*) [Table 3].
Table 3: Mean TNF-α results

Click here to view


EGF: The mean IL1β for experimental teeth at 24 hours was considerably higher compared to baseline (0.84 ± 0.12 pg/μg vs 0.18 ± 0.11 pg/μg, p < 0.05*) and also in contralateral control teeth (0.31 ± 0.12 pg/μg vs 0.17 ± 0.11 pg/μg, p < 0.05*) [Table 4].
Table 4: Mean EGF results

Click here to view


β2-MG: The mean β2-MG gradually increased to its maximum level at 168 hours (16.4 ± 4.8 pg/μg), and a statistically significant difference was found between experimental and control site at 24 hours (8.9 ± 4.1 pg/μg vs. 0.49 ± 3.4 pg/μg) [Table 5].
Table 5: Mean β-MG results

Click here to view



  Discussion Top


The altering levels, rise, and fall of the mediators in GCF are suggestive of underlying intricate biological remodelling processes in bone and periodontal tissues that eventually leads to OTM. The forces employed for OTM led to an initial increase in levels of inflammatory mediators as well as associated receptors namely IL-1β, IL-6 and TNF-α as early as 1 minute [16] or 1 hour [18] and attained peak in 24 hours.[17],[18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30],[31] These mediators slowly decrease to baseline in subsequent observation points at 48 hours, 168 hours, 14 days, and 21 days.[18],[31] The present study has reported the cytokine levels (pg) per μg of total protein in the GCF. This is an important point because: (1) fluidcontents in GCF varyvastlybetween samples; (2) all values of cytokine (pg) per μg of protein in GCF at the stressed sites showed a rapid and transient increase, as compared with those for both control sites at 24 hours – or experimental site at baseline (0 h r) further confirming cytokine induction during tooth mobilization.

It has been speculated that the cytokines are produced by the cells of PDL and alveolar bone, such as fibroblasts, macrophages, osteoblasts and osteoclasts. Mechanically deformed osteoblasts and PDL cells display a wide range of molecular alterations, some of which are capable of causing bone resorption.[20] They include IL-1β, TNFα, and IL-6 which have been implicated in bone resorption processes.[18],[23],[26] Inflammation also involves the elevation of β2-MG which has close association with major histocompatibility complex-I and play a major role in inflammation.


  Conclusion Top


The present study thus concludes that all cytokines in GCF play an important role in the bone remodelling processes in vivo. The present results indicate that the changes in cytokines in GCF are associated with orthodontic tooth movement.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Davidovitch Z, Nicolay OF, Ngan PW, Shanfeld JL. Neurotransmitters, cytokines and the control of alveolar bone remodelling in orthodontics. Dent Clin North Am 1988; 32:411-35.  Back to cited text no. 1
    
2.
Gianni E. Genetics and dynamical modulators in orthodontics (Italian). WFO Gazzette 2013; 18:4.  Back to cited text no. 2
    
3.
Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 2006; 28:221-40.  Back to cited text no. 3
    
4.
Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2006; 129:458-68.  Back to cited text no. 4
    
5.
Uitto VJ. Gingival crevice fluid-an introduction. Periodontol 2000 2003;31:9-11.  Back to cited text no. 5
    
6.
Meager A. Cytokine regulation of cellular adhesion molecule expression in inflammation. Cytokine Growth Factor Rev 1999; 10:27-39.  Back to cited text no. 6
    
7.
Saito S, Ngan P, Saito M, Kim K, Lanese R, Shanfeld J, et al. Effects of cytokines on prostaglandin E and cAMP levels in human periodontal ligament fibroblasts in vitro. Arch Oral Biol 1990; 35:387-95.  Back to cited text no. 7
    
8.
Mundy GR. Cytokines and local factors which affect osteoclast function. Int J Cell Cloning 1992; 10:215-22.  Back to cited text no. 8
    
9.
Kimoto S, Matsuzawa M, Matsubara S, Komatsu T, Uchimura N, Kawase T, et al. Cytokine secretion of periodontal ligament fibroblasts derived from human deciduous teeth: Effect of mechanical stress on the secretion of transforming growth factor-beta 1 and macrophage colony stimulating factor. J Periodontal Res 1999; 34:235-43.  Back to cited text no. 9
    
10.
Ozaki K, Leonard WJ. Cytokine and cytokine receptor pleiotropy and redundancy. J Biol Chem 2002; 277:29355-58.  Back to cited text no. 10
    
11.
Yue Y, Liu Q, Xu C, Ty Loo W, Wang M, Wen G, et al. Comparative evaluation of cytokines in gingival crevicular fluid and saliva of patients with aggressive periodontitis. Int J Biol Markers 2013; 28:108-12.  Back to cited text no. 11
    
12.
Offenbacher S, Odle BM, Van Dyke TE. The use of crevicular fluid Prostaglandin E2 levels as a predictor of periodontal attachment loss. J Periodontal Res 1986;21:101-12.  Back to cited text no. 12
    
13.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-54.  Back to cited text no. 13
    
14.
Mogi M, Harada M, Kojima K, Adachi T, Narabayashi H, Fujita K, et al. β2-microglobulin decrease in cerebrospinal fluid from Parkinsonian patients. Neurosci Lett 1989; 104:241-6.  Back to cited text no. 14
    
15.
Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-a (TNF-a) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994a; 165:208-10.  Back to cited text no. 15
    
16.
Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, et al. Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-a are elevated in the brain from Parkinsonian patients. Neurosci Lett 1994b; 180:147-50.  Back to cited text no. 16
    
17.
Cimasoni G. Crevicular fluid updated. Monogr Oral Sci 1983; 12:104-23.  Back to cited text no. 17
    
18.
Karacay S, Saygun I, Bengi AO, Serdar M. Tumor necrosis factor-alpha levels during two different canine distalization techniques. Angle Orthod 2007; 77:142-7.  Back to cited text no. 18
    
19.
Grieve W, Johnson GK, Moore RN, Reinhardt RA, Dubois LM. PGE and IL-1β levels in gingival crevicular fluid during human orthodontic tooth movement. Am J Orthod Dentofacial Orthop 1994; 105:369-74.  Back to cited text no. 19
    
20.
Sandy JR, Meghji S, Scutt AM, Harvey W, Harris M, Meikle MC. Murine osteoblasts release bone-resorbing factors of high and low molecular weights: Stimulation by mechanical deformation. Bone Min 1989; 5:155-68.  Back to cited text no. 20
    
21.
Kuijpers MAR, Chiu Y-T, Nada RM, Carels CEL, Fudalej PS. Three-dimensional imaging methods for quantitative analysis of facial soft tissues and skeletal morphology in patients with orofacial clefts: A systematic review. PLoS One 2014; 9:e93442.  Back to cited text no. 21
    
22.
Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: A tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003; 10:25.  Back to cited text no. 22
    
23.
Luppanapornlarp S, Kajii TS, Surarit R, Iida J. Interleukin-1beta levels, pain intensity, and tooth movement using two different magnitudes of continuous orthodontic force. Eur J Orthod 2010; 32:596-601.  Back to cited text no. 23
    
24.
Dilsiz A, Kiliç N, Aydin T, Ates FN, Zihni M, Bulut C. Leptin levels in gingival crevicular fluid during orthodontic tooth movement. Angle Orthod 2010; 80:504-8.  Back to cited text no. 24
    
25.
Iwasaki LR, Chandler JR, Marx DB, Pandey JP, Nickel JC. IL-1 gene polymorphisms, secretion in gingival crevicular fluid, and speed of human orthodontic tooth movement. Orthod Craniofac Res 2009; 12:129-40.  Back to cited text no. 25
    
26.
Toygar HU, Kircelli BH, Bulut S, Sezgin N, Tasdelen B. Osteoprotegerin in gingival crevicular fluid under long-term continuous orthodontic force application. Angle Orthod 2008; 78:988-93.  Back to cited text no. 26
    
27.
Tzannetou S, Efstratiadis S, Nicolay O, Grbic J, Lamster I. Comparison of levels of inflammatory mediators IL-1beta and beta G in gingival crevicular fluid from molars, premolars, and incisors during rapid palatal expansion. Am J Orthod Dentofacial Orthop 2008; 133:699-707.  Back to cited text no. 27
    
28.
Ren Y, Hazemeijer H, De Haan B, Qu N, De Vos P. Cytokine profiles in crevicular fluid during orthodontic tooth movement of short and long durations. J Periodontol 2007; 78:453-8.  Back to cited text no. 28
    
29.
Başaran G, Ozer T, Kaya FA, Kaplan A, Hamamci O. Interleukine-1beta and tumor necrosis factor-alpha levels in the human gingival sulcus during orthodontic treatment. Angle Orthod 2006; 76:830-6.  Back to cited text no. 29
    
30.
Kawasaki K, Takahashi T, Yamaguchi M, Kasai K. Effects of aging on RANKL and OPG levels in gingival crevicular fluid during orthodontic tooth movement. Orthod Craniofac Res 2006; 9:137-42.  Back to cited text no. 30
    
31.
Başaran G, Ozer T, Kaya FA, Hamamci O. Interleukins 2, 6, and 8 levels in human gingival sulcus during orthodontic treatment. Am J Orthod Dentofacial Orthop 2006; 130:7.e1-6.  Back to cited text no. 31
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5]



 

Top
   
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
   Abstract
  Introduction
   Materials and Me...
  Results
  Discussion
  Conclusion
   References
   Article Tables

 Article Access Statistics
    Viewed48    
    Printed0    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    

Recommend this journal