Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 5281
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2020  |  Volume : 9  |  Issue : 1  |  Page : 77-81

Comparison of stability changes of various palatal implants

1 Department of Orthodontics and Dentofacial Orthopedics, Kothiwal Dental College and Research Center, Mora Mustaqueem, Moradabad, Uttar Pradesh, India
2 Department of Prosthodontics, Dental Institute, RIMS, Ranchi, Jharkhand, India
3 Department of Orthodontics and Dentofacial Orthopedics, Maitri College of Dentistry and Research Center, Anjora, Durg, Chattisgarh, India
4 Department of Orthodontics, Manav Rachna Dental College, Faridabad, Haryana, India
5 Department of Orthodontics, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India

Correspondence Address:
Dr. Poonam K Jayaprakash
Professor, Department of Orthodontics and Dentofacial Orthopedics, Kothiwal Dental College and Research Center, Mora Mustaqueem, Moradabad, UP - 244 001
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jfmpc.jfmpc_383_19

Rights and Permissions

Aim: The aim of this study was to comparatively evaluate stability changes in palatal implants during the early stages of bone healing with chemically modified sandblasted/acid-etched (modSLA) titanium surface compared with a standard sandblasted (SLA) titanium palatal implants. Materials and Methods: A statistically significant number (n = 40; 24 females and 16 males) of adult subjects who volunteered and have their informed consent for participating in the study were selected. These volunteers were randomly allocated to the experimental group (modSLA surface) and to the control group (SLA surface) with 20 subjects in each group. Documentation of implant stability was done by assessing resonance frequency analysis (RFA) at implant insertion, followed by subsequent assessments each week till 12th week from baseline (1–12 weeks). RFA values were expressed as an implant stability quotient (ISQ). Results: Immediately after installation of implant, the ISQ values for both surfaces tested were not significantly different and yielded mean values of 75.28 ± 5.23 for the control and 73.16 ± 4.81 for the test surface. In the first 2 weeks after implant installation, both groups presented only small changes and thereafter a reducing trend in the mean ISQ levels. In the test group, after 4 weeks a tendency toward increasing ISQ values was observed, and 6 weeks after surgery the ISQ values corresponded to those after implant insertion. For the SLA control group, the trend changed after fifth week and yielded ISQ values corresponding to the baseline after ninth week. After 12 weeks of observation, the test surface yielded significantly higher stability values of 78.68 ± 2.9 compared with the control implants of 75.5 ± 3.19, respectively. Conclusion: The results undoubtedly support and validate the potential for chemical modification of the SLA surface to positively influence the biologic process of osseointegration and also a faster healing.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded91    
    Comments [Add]    

Recommend this journal