Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 3616
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 10  |  Issue : 8  |  Page : 2793-2797  

Snakebite profile from a tertiary care setup in a largely rural setting in the hills of North-West India


1 RHFWTC, Chheb, Kangra, Himachal Pradesh, India
2 Department of Community Medicine, Dr. RP Government Medical College, Tanda, Himachal Pradesh, India
3 Department of Internal Medicine, Dr. RP Government Medical College, Tanda, Himachal Pradesh, India

Date of Submission03-Dec-2020
Date of Decision06-Feb-2021
Date of Acceptance28-Feb-2021
Date of Web Publication27-Aug-2021

Correspondence Address:
Dr. Sunil K Raina
Community Medicine, Dr. RP Government Medical College, Tanda, Himachal Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jfmpc.jfmpc_2377_20

Rights and Permissions
  Abstract 


Background: Snakebite, a medical emergency, faced by rural populations in tropical and subtropical countries assumes special significance in hilly terrains. Therefore, the hills provide a natural setting to study the challenges in the management of snakebite cases. Methodology: A hospital record-based retrospective descriptive study was conducted. Data were collected from the Medical Records Department of the 821-bedded, tertiary care hospital catering to the rural hilly population of the state of Himachal Pradesh, India. Information were recorded on details of demography, clinical profile treatment and outcome. Results: A total of 252 patients were analyzed. Maximum patients were in the age-group of 21–40 (43.7%) with mean and standard deviation of 30.52 ± 5.693 and 31.81 ± 7.117 for male and female, respectively. A small minority (17.06%) of patients reported to health facility within 4–6 h of the bite. Maximum bites were on lower limb (143;56.74). Overall mortality rate in our study was 2.38%. Conclusion: Large-scale studies on epidemiological determinants of snakebite coupled with research in venom biochemistry and bio-pharmacology of anti-snake venom (ASV) are needed. The study also provides insights into the role of primary care practitioners in creating an ecosystem favorable for snakebite management at local level.

Keywords: Envenomation, outcome, profile, snakebite


How to cite this article:
Kumar A, Raina SK, Raina S. Snakebite profile from a tertiary care setup in a largely rural setting in the hills of North-West India. J Family Med Prim Care 2021;10:2793-7

How to cite this URL:
Kumar A, Raina SK, Raina S. Snakebite profile from a tertiary care setup in a largely rural setting in the hills of North-West India. J Family Med Prim Care [serial online] 2021 [cited 2021 Sep 24];10:2793-7. Available from: https://www.jfmpc.com/text.asp?2021/10/8/2793/324698




  Introduction Top


India accounts for almost half of the total number of annual snakebite deaths in the world.[1] As per a report, India reported 1.2 million snakebite deaths (representing an average of 58,000 per year) from 2000 to 2019. Nearly half of these deaths were in the age-group of 30–69 years with over a quarter being children under 15 years of age.[1]

As per available reports, there are about 216 species of snakes in India, of which only four are being reported as venomous (cobra, krait, Russell's viper, and saw-scaled viper).[2] Himachal Pradesh, a northern India state, situated in the Western Himalayas is one of the 11-mountain states in the country.

The state has reported the existence of venomous snakes like Trimeresurus albolabris (white lipped pit viper), Gloydius himalayanus (Himalayan pit viper) and Naja oxiana (black cobra) in addition to the common “Big 4” – the Indian cobra (Naja naja), the common krait (Bungarus caeruleus), the Russell's viper (Daboia russelii), and the saw-scaled viper (Echis carinatus), which are found throughout India.[3]

An important aspect of morbidity due to snakebite is its large-scale neglect by public health. Despite being a common acute medical emergency, snakebite has been largely ignored by public health in India with very few large-scale epidemiological studies having been conducted. Mountainous terrains are a special challenge as the terrain in itself increases the challenge medical emergencies like snakebites bring on.[4] The Hills are a special environment, thereby providing special setting to study the challenges in the management of snakebites. The geography offers eco-rich vegetation and abundance of flora and fauna. A scattered population using paths traversing rural and forest lands makes people in these areas particularly vulnerable to snakebite.[5]


  Material and Methods Top


A hospital record-based retrospective descriptive study was conducted. Data were collected from the Medical Records Department of the 821-bedded, tertiary care hospital catering to the rural hilly population of the state of the physio-geographic zone of Shivalik and Lesser Himalayas of the Himachal Pradesh state of India. Data on all snakebite cases admitted to the tertiary care hospital from January 2018 to December 2018 was retrieved using a structured format after obtaining institutional permission for the same. The data were entered in a pre-coded proforma and included details on demography, clinical profile, treatment, and outcome. Only records of snakebite cases in which complete information was available were included in pre-coded proforma parameters. Snakebite patients who absconded or were discharged against medical advice and where records were incomplete were excluded.

Statistical analysis

Quantitative data analysis will include means, standard deviation, and proportions. The data were analyzed using Chi-square test for comparison. Risk was estimated using odds ratio. Data analysis was done by epi.info app version 7.


  Results Top


A total of 252 patients were analyzed. Majority (153/252; 60.7%) of the patients was female and the maximum number of patients (110/252; 43.7%) was in the age-group of 21–40 with mean and standard deviation of 30.52 ± 5.693 and 31.81 ± 7.117 for male and female, respectively [Table 1]. Time distribution of snakebite is shown in [Table 2] with maximum bites being seen between 12 noon to 6 pm. However, the difference in the proportion of patients reporting in different time slots was not statistically significant. Only 3.12% (8/252) patients reported to health facility within 1 h of the bite with [Table 3]. A substantial number (161/252; 63.58%) had no information on their first contact with healthcare facility. Majority of bites (143/252; 56.74%) were on the lower limb with an odds ratio of 1.957 and CI of 1.376–2.81 [Table 4].
Table 1: Age-wise distribution of snakebite cases (n=252)

Click here to view
Table 2: Time distribution of snakebite cases (n=252)

Click here to view
Table 3: Time between bite and first health contact (n=252)

Click here to view
Table 4: Site distribution of snakebite cases (n=252)

Click here to view


The clinical presentation of data reveals that no signs of envenomation in 59.52% (150/252) of patients. Out of the envenomation found 26.58% (67/252) of bite was reported as hematotoxic while 11.90% (30/252) were reported as neurotoxic [Table 5]. A small percentage (5/252; 1.98%) showed a mixed pattern. The data analysis revealed that all snakebite patients recorded presence from April onwards till October [Table 6], with June to September being the peak season of presentation (221/252; 87.6%). Maximum bites were reported in July (74/252; 29.3%) followed by August (63/252; 25%). Majority (94/252; 37.3%) of patients did not report a particular activity at the time of the bite [Table 7]. However, a significant number of patients (74/252; 29.4%) mentioned farming as their activity during the bite. Importantly 13.09% (33/252) of patients reported of bite while sleeping.
Table 5: Clinical presentation of the cases (n=252)

Click here to view
Table 6: Month-wise distribution of snakebite cases (n=252)

Click here to view
Table 7: Activities of snakebite cases during bite (n=252)

Click here to view


A significant majority (176/252; 69.84%) of patients did not report of application of tourniquet at the time of bite [Table 8]. A large majority (222/252; 88.1%) refused to have taken any alternate medicine for the management of the snakebite. Acute kidney injury was present in 6.74% (17/252) of patients, whereas cranial bleed was present only in 0.4% of the patients [Table 9]. A significant minority of patients (6/252; 2.3%) did not survive the snakebite [Table 10].
Table 8: Tourniquet application and use of alternative medicine at the time of bite (n=252)

Click here to view
Table 9: AKI/Cranial bleed among snakebite cases (n=252)

Click here to view
Table 10: Outcome of snakebite cases (n=252)

Click here to view



  Discussion Top


The data analysis although restricted to a tertiary care setup provides insight into morbidity due to snakebite in a largely rural population in addition to some insights into the potential role of healthcare providers in primary care settings in dealing with such situations. As per the data analysis, the maximum number of patients in our study belonged to the age-group of 21–40 years. This age-group being highly active and involved in outdoor activities is increasingly more prone to snakebite. Studies on similar domain report similar results.[6],[7] An increased proportion of patients belonging to the female gender could be attributed to the vocation of the females in this physio-geographic zone.

Grass cutting activity for fodder is a common practice resorted to by the females in this region.[8],[9] This could be the reason that our proportions are not similar to some other studies where male (74.2%) were more in number than females the reason.[10] Maximum bites were between 12 noon to 6 pm, reflecting the time when people are mostly outdoors doing their chores.

Snakebite cases occurred, starting from the month of April till October which is ideal condition for snakes. Also, this season is ideal for harvesting and also marked by monsoons, adding on to the favorable conditions for snakebites.[8] This distinct seasonal pattern with peaks in the warm and rainy months has been observed in the state of Himachal Pradesh, as in other parts of the country.[5],[8],[9],[11],[12],[13],[14],[15]

There were only eight patients who presented to the hospital (or health facility) within 1 h. Acute kidney injury was seen in 6.7% of patients, which could be attributed to late presentation to the hospital leading to the development of complications. Initial delay in transportation and inadequate ambulance services coupled with low level of awareness on the nature of intervention could be the reasons for delayed presentation to the health facility.[8],[14] As per studies, the incidence of acute renal failure is around 13–32% following viper bite in India.

Majority of bites were in the lower limbs (150) followed by the upper limb (96) which are generally the exposed parts of the body. Similar findings have been reported by other studies.[8],[14],[15],[16] A large proportion of patients presented with no signs of envenomation, which again emphasizes the need for creation of awareness among general public as well the healthcare providers in the primary care setting. Correct information would reduce panic and save vital time in instituting management. Furthermore, this would reduce unnecessary burden on emergency department.[10] Increased awareness will also ensure lesser and lesser use of tourniquet application and alternate medicine.

Overall mortality rate in our study was 2.38%, which was a little higher than as seen in another study.[11] The probable reason could be delayed presentation to the health facility, delayed administration of ASV. However, the mortality rate after snakebite depends upon various factors like type of snakebite, amount of venom injected, site of bite (serious if bitten on the trunk or head, neck, and face), species and size of the snakes, the extent of its anger or fear, the presence of bacteria in the mouth of the snake or on the skin of the victim.[11]

The study although restricted to one physio-geography does highlight the management difficulties posed by mountain terrain. It also raises issues regarding the lack of available and easily accessible snakebite management at all places. In addition to the fact that large-scale studies on epidemiological determinants of snakebite coupled with research in venom biochemistry and bio-pharmacology of anti-snake venom (ASV) are needed, research also needs to focus on the role of primary care physicians in the management of snakebite. An integration of snakebite management into injury management protocols as part of comprehensive emergency care with primary care physician as focus will go a long way in preventing mortality. Creating an ecosystem favorable for snakebite management at primary care level will be the key.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Available from: https://www.who.int/news-room/detail/10-07-2020. [Last accessed on 2020 Dec 03].  Back to cited text no. 1
    
2.
Suraweera W, Warrell D, Whitaker R, Menon G, Rodrigues R, Fu SH, et al. Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study. Elife 2020;9:e54076.  Back to cited text no. 2
    
3.
Saikia U, Sharma DK, Sharma RM. Checklist of the reptilian fauna of Himachal Pradesh, India. Reptile Rap 8:6-9.  Back to cited text no. 3
    
4.
Boyd JJ, Agazzi G, Svajda D, Morgan AJ, Ferrandis S, Norris RL. Venomous snakebite in mountainous terrain: Prevention and management. Wilderness Environ Med 2007;18:190-202.  Back to cited text no. 4
    
5.
Mapping snakes in Uttarakhand for safer coexistence with humans. Available from: india.mongabay.com. [Last accessed on 2021 Feb 19].  Back to cited text no. 5
    
6.
Jones AL, Karalliedde L. Poisoning. In: Boon NA, Colledge NR, Walker BR, editors. Davidson's Principles and Practice of Medicine. 20th ed. Philadelphia: Churchill Livingstone Elsevier; 2006. p. 203-26.  Back to cited text no. 6
    
7.
Warrell DA. Injuries, envenoming, poisoning and allergic reactions caused by animals. In: Warrel DA, Cox TM, Firth JD, editors. Oxford Textbook of Medicine. 4th ed. Vol. 1. New York: Oxford University Press; 2003. p. 923-46.  Back to cited text no. 7
    
8.
Raina S, Raina S, Kaul R, Chander V, Jaryal A. Snakebite profile from a medical college in rural setting in the hills of Himachal Pradesh, India. Indian J Crit Care Med 2014;18:134-8.  Back to cited text no. 8
[PUBMED]  [Full text]  
9.
Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, et al. Snakebite mortality in India: A nationally representative mortality survey. PLoS Negl Trop Dis 2011;5:e1018.  Back to cited text no. 9
    
10.
Ahmed SM, Nadeem A, Islam MS, Agarwal S, Singh L. Retrospective analysis of snake victims in Northern India admitted in a tertiary level institute. J Anaesthesiol Clin Pharmacol 2012;28:45-50.  Back to cited text no. 10
[PUBMED]  [Full text]  
11.
Monteiro FN, Kanchan T, Bhagavath P, Kumar GP, Menezes RG, Yoganarasimha K. Clinico-epidemiological features of viper bite envenomation: A study from Manipal, South India. Singapore Med J 2012;53:203-7.  Back to cited text no. 11
    
12.
Saravu K, Somavarapu V, Shastry AB, Kumar R. Clinical profile, species-specific severity grading, and outcome determinants of snake envenomation: An Indian tertiary care hospital-based prospective study. Indian J Crit Care Med 2012;16:187-92.  Back to cited text no. 12
[PUBMED]  [Full text]  
13.
Sharma N, Chauhan S, Faruqi S, Bhat P, Varma S. Snake envenomation in a north Indian hospital. Emerg Med J 2005;22:118-20.  Back to cited text no. 13
    
14.
Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F. Snake bite in South Asia: A review. PLoS Negl Trop Dis 2010;26;4:e603.  Back to cited text no. 14
    
15.
Halesha BR, Harshavardhan L, Lokesh AJ, Channaveerappa PK, Venkatesh KB. A study on the clinico-epidemiological profile and the outcome of snake bite victims in a tertiary care centre in southern India. J Clin Diagn Res 2013;7:122-6.  Back to cited text no. 15
    
16.
Jarwani B, Jadav P, Madaiya M. Demographic, epidemiologic and clinical profile of snake bite cases, presented to emergency medicine department, Ahmedabad, Gujarat. J Emerg Trauma Shock 2013;6:199-202.  Back to cited text no. 16
[PUBMED]  [Full text]  



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6], [Table 7], [Table 8], [Table 9], [Table 10]



 

Top
   
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
   Abstract
  Introduction
  Material and Methods
  Results
  Discussion
   References
   Article Tables

 Article Access Statistics
    Viewed166    
    Printed0    
    Emailed0    
    PDF Downloaded38    
    Comments [Add]    

Recommend this journal