Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 3553
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 10  |  Issue : 8  |  Page : 2958-2963  

Viral characteristics and clinical presentation in dengue co-infection- Findings from a facility based observational study in Odisha, India


1 VRDL, ICMR-RMRC Bhubaneswar, Nalco Square, Odisha, India
2 Department of Public Health, ICMR-RMRC, Bhubaneswar, Odisha, India

Date of Submission04-Dec-2020
Date of Decision21-Feb-2021
Date of Acceptance23-Mar-2021
Date of Web Publication27-Aug-2021

Correspondence Address:
Dr. Jyotirmayee Turuk
CMR-RMRC Bhubaneswar, Nalco Square, Odisha - 751 023
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jfmpc.jfmpc_2380_20

Rights and Permissions
  Abstract 


Background: Dengue has affected many countries globally. Two-fifths part of the world is at risk, which can be affected by dengue disease. In India, the dengue incidence has increased in the recent past and emerged as an important health problem in many states including Odisha. Dengue disease presents with atypical clinical symptoms when associated with other co-infections. Materials and Methods: A facility-based longitudinal study was carried out over a period of 1 year to determine the dengue co-infection and its outcome. The suspected cases were clinically assessed following a standard case report format and serological investigations including serotyping were carried out. Results: 33.6% samples were dengue positive of which 78.5% were positive for NS1 Ag, 26.6% positive for dengue IgM and 5.1% to both. Among the dengue positive cases, 60.9% were male and mean age was 31.52 (±17.03) years. High occurrence of cases was during May to November with maximum in August. Among the 975 dengue positives, 57 (5.8%) were found to have co-infection. Chikungunya was the most common co-infection in 71.9%, followed by herpes simplex (HSV) (7%) and other diseases. Fever was the most common presenting symptom (98.2%), followed by myalgia (91.2%), retro orbital pain (91.2%), pain abdomen (12.3%), rash/lesion (8.8%), burning micturition (5.3%), petechiae (1.7%) and pruritus (1.7%) among the co-infected cases. Conclusions: All the four dengue serotypes were found to be circulating with DEN 2 as the most predominant one. About 5.8% of dengue cases have co-infection (mainly with Chikungunya) and clinically present with atypical signs and symptoms.

Keywords: Co-infection, dengue, phylogeny, serology


How to cite this article:
Turuk J, Palo SK, Rath S, Subhadra S, Sabat J, Sahoo PK, Panda S, Pati S. Viral characteristics and clinical presentation in dengue co-infection- Findings from a facility based observational study in Odisha, India. J Family Med Prim Care 2021;10:2958-63

How to cite this URL:
Turuk J, Palo SK, Rath S, Subhadra S, Sabat J, Sahoo PK, Panda S, Pati S. Viral characteristics and clinical presentation in dengue co-infection- Findings from a facility based observational study in Odisha, India. J Family Med Prim Care [serial online] 2021 [cited 2021 Sep 24];10:2958-63. Available from: https://www.jfmpc.com/text.asp?2021/10/8/2958/324699




  Highlights Top


  1. Atypical symptoms with dengue infection may go unrecognised and therefore the confection of dengue along with other viral and bacterial diseases is under reported.
  2. Co-infection of multiple serotypes was seen.
  3. Co-circulation of DEN 1, 2, 3 and 4 serotypes with predominance of DEN 2 was observed among dengue cases of Odisha during 2018.



  Background Top


The global incidence of dengue is estimated to be 390 million per year, of which 96 million manifest apparently.[1] Although more than 100 countries worldwide are now affected by dengue, it is prevalent in Africa, the Americas, Asia, the Caribbean and the Pacific making it an important public health problem in these regions. In 2021, the five countries reporting most cases are Vietnam, Colombia, Paraguay, Philippines and Sri Lanka.[2] In India, the incidence of dengue infection has increased remarkably over the last decade, with more than 67,000 diagnosed dengue cases in 2019, as per reports by the National Vector Borne Disease Control Programme.[3] In clinically suspected patients for dengue, the prevalence of laboratory confirmed dengue positive was 38.3% and dengue seroprevalence in the general population is 56.9%.[4] In Odisha (an eastern state of India), dengue has re-emerged since 2010 and a number of dengue cases are increasingly reported thereafter from different parts of the state.[5] A study from western Odisha showed that the prevalence of dengue among febrile cases to be 25.3%, an important aetiology for non-malarial febrile illness.[6] The geo-climatic condition of Odisha favours the increased vector density for dengue, thereby making people of the state vulnerable to dengue.[7]

Symptoms in dengue vary from mild self-limiting fever to severe forms of manifestations like severe headache, petechiae, bone pain, enlargement of lymph nodes and frank bleedings.[8] In 2012, WHO expanded the horizon of classic dengue fever and named it expanded dengue syndrome.[9] Expanded dengue syndrome is usually associated with co-infection and with multiple organ involvement leading to severe shock. There are few studies, mostly case reports, of dengue co-infection with other viral, bacterial, immunological and parasitic diseases. Studies in India on dengue co-infection showed the incidence of dengue and Chikungunya co-infection to be the most common varying from 9.5% to 10.7%[10],[11] followed by dengue and JE and Zika viral co-infection. Considering limited studies available on the viral characteristics and clinical manifestations in dengue co-infection, present study was intended to explore this dimension.


  Materials and Methods Top


Study Design and Setting

A facility-based observational study was carried out at Regional Medical Research Center (RMRC), Bhubaneswar, Odisha, during January to December 2019. The dengue suspected cases referred for laboratory investigations to regional Virology Research and Diagnostic Laboratory (VRDL), Bhubaneswar from all parts of Odisha to the centre during the period studied. While the VRDL of RMRC, Bhubaneswar has facilities to diagnose more than 50 viruses along with serotyping for some viruses, RMRC centre has also facilitated for diagnosis of malaria parasites and bacterial infections. The samples referred to VRDL were accompanied with a standardized case report form (CRF) having detailed clinical information about the patient. In case of any missing information, one research assistant was engaged to contact the case and collect the detailed information over the phone.

Serological Investigation

Serum samples from patients were subjected to ELISA-based tests specific for dengue depending on fever history adhering to WHO guideline 2009.[12] Patients with history of 1–5 days were tested for dengue NS1 antigen and patients having fever for more than 5 days were tested for dengue-specific IgM antibody (MAC—ELISA). Patients having a history of 3–5 days of fever were tested for both dengue NS1 antigen and IgM antibodies in the serum. Other suspected viral co-infections were tested using appropriate methods (serology or polymerase chain reaction (PCR)). Malaria was tested using Advantage Malaria card (J. Mitra and Co. Pvt. Ltd. (RDT)) and bacterial infection was confirmed by culture and sensitivity. The dengue ELISA positive samples were serotyped by nested PCR and genomic analysis was done by sequencing.[13]

Serotyping by RT-PCR

All dengue NS1 positive samples were serotyped using reverse transcription PCR using QIAamp viral RNA kit. The dengue serotyping was performed according to standard protocol followed at VRDL. The amplified product was used for the second step using D1, TS1, TS2, TS3 and TS4 primers. The final product was visualised in 2% agarose gel in the gel doc system.[13]

Phylogenetic Analysis

A 362 bp product from the CprM region was sequenced using the first-round primers and the ABI BigDye terminator cycle sequencing ready reaction kit (DNA Sequencer, ABI, Vernon, CA, USA). Phylogenetic tree was computed among four serotypes using the Kimura 2 parameter matrix and neighbour joining (NJ) method using Mega software, version 6.[14],[15],[16],[17]

A subset of randomly selected representative samples which were Dengue serotype 2 from each district were taken and sequenced. An NJ phylogenetic tree was constructed with available reference sequences isolated from different regions of India.


  Results Top


Out of a total 3005 dengue suspected samples referred to the centre, 2902 were enrolled for the study with a drop out of 3.4% because of either absence of CRF or improper sample transportation. The male and female enrolled cases were 1744 (60%) and 1158 (40%), respectively. A total of 974 (33.6%) samples were tested dengue positive of which 765 (78.5%) positive for NS1 Ag, 259 (26.6%) positive for dengue IgM and 50 (5.1%) to both. Among the dengue positive cases, 593 (60.9%) were male and 381 (39.1%) were female. The mean age among positive cases was 31.52 (±17.03) years (31.53 (±17.04) years among male and 31.46 (±16.99) years among females. The detailed age and genderwise distribution of dengue positive cases is presented in [Table 1]. Genderwise there was no significant difference in the odds ratio of dengue cases between male and females (OR = 1.05, 0.897–1.230, P > 0.05). Significant difference in odds ratio was observed in dengue cases in different age groups and depicted in [Table 1]. Monthwise distribution of dengue cases showed the occurrence to be high during May to November with maximum in the month of August [Figure 1].
Table 1: Gender and agewise distribution of dengue cases (n=2902)

Click here to view
Figure 1: Monthwise distribution of suspected and dengue positive cases

Click here to view


Dengue Co-Infections

Among the 974 dengue positives, 57 (5.8%) were found to have co-infection. Chikungunya was the most common co-infection in 71.9%, followed by herpes simplex (HSV) (7%) and other diseases. Fever was the most common presenting symptom (98.2%), followed by myalgia (91.2%), retro orbital pain (91.2%), pain abdomen (12.3%), rash/lesion (8.8%), burning micturition (5.3%), petechiae (1.7%) and pruritus (1.7%) among the co-infected cases. Detailed co-infection types and the clinical presentations are given in [Table 2]. An interesting feature was that fever was a late clinical presentation in cases presenting with co-infection as compared to monoinfection. Thrombocytopenia was aggravated in dengue Chikungunya co-infections, with 1–2 cases reported with sudden onset of bleeding from gums and nose.
Table 2: Type of co-infection and symptoms among dengue co-infection cases (n=57) and dengue monoinfection (n=917)

Click here to view


Dengue Serotypes by Reverse Transcription PCR (RT-PCR)

Reverse transcription PCR (RT-PCR) was performed for all the 765 NS1 positive samples. All the four dengue serotypes (DEN 1, 2, 3 and 4) were found among the samples. While monoinfection with DEN 2 was observed in majority 567 (74.1%), DEN 1 in 183 (23.9%) and DEN 3 was found in 15 (2.0%) of the samples. Multiple serotypes of DEN 2 and DEN 4 were detected in 6 (0.7%) of samples.

Among the 57 co-infected dengue cases, 14 were positive to NS1. Their serotype assessment showed positive to DEN 2 serotype in 12 (85.7%) cases and positive to DEN 3 serotype in 2 (14.3%) co-infected cases.

Phylogenetic Analysis

Phylogenetic tree computed among four serotypes using Kimura 2 parameter matrix and NJ method in Mega software, version 6 was found that a 362-bp product from CprM region was identical for D2 had clustered with sequences of genotype IV with 99% identity with strains isolated from Kerala and 98% identity with North Indian strains [Figure 2].
Figure 2: Phylogenetic tree of identified four dengue serotypes. Phylogenetic tree computed among four serotypes using Kimura 2 parameter matrix and neighbour joining method in Mega software, version 6 was found that a 362 bp product from CprM region were identical for D2 had clustered with sequences of genotype IV with 99% identity with strains isolated from Kerala and 98% identity with North Indian strains

Click here to view



  Discussion Top


This is the first ever study from the state of Odisha exploring the viral characteristics and clinical presentations in dengue co-infection. Among all the cases investigated, 33.6% were dengue positive. A study from Puerto Rico found that 18.6% of the total fever cases are because of dengue.[18] The mean age of dengue cases was 31.52 years and the proportion of males was 60% among the dengue positives. This could be due to more exposure to mosquito bites among males of this age group. The male preponderance of dengue cases is also seen in other studies from across the world. It is seen in one of the studies from Colombo, which showed that dengue was caused in majority of males of about 66.3% from the total dengue cases in the population considered.[19] The findings of the common age group affected is in contrast to other studies that found higher proportion of dengue cases in the age group 11–20 and 15–24 years.[20],[21] Majority of the cases were reported during the month May to November, which shows the disease starts during the pre-monsoon with peak transmission during monsoon. Other studies have also found monsoon and post-monsoon as the favourable period for dengue transmission.[22],[23] During the pre-monsoon period, if there is rain, this leads to accumulation of fresh water in the surroundings leading to multiplication of Aedes vector, which increases the probability of dengue transmission. All the four dengue serotypes DEN 1, 2, 3 and 4 were found to be present and circulating in the state of Odisha with DEN 2 as the predominant serotype. Infection with both DEN 2 and DEN 4 serotypes was found in 0.7% dengue positive cases. Similar multi-serotype dengue infection has also been reported earlier.[4] A hospital-based study from Malaysia suggested that dengue patients positive for multiple serotypes have more severe clinical manifestations than monoserotypes. However, this could not be associated in the present study.

Most common form of co-infection with dengue was found to be Chikungunya (71.9%). Both dengue and Chikungunya viruses are transmitted by Aedes mosquito, so it is highly possible that both viruses could be transmitted concurrently. Other studies have reported co-infection of dengue and Chikungunya to be around 32% among patients with fever of unknown origin (FUO).[24],[25] The symptoms in cases with co-infection of dengue and Chikungunya were fever, myalgia and retro orbital pain and a gross degree of thrombocytopenia. The cases with dengue and Chikungunya co-infection were followed up and it was found that myalgia persisted for longer time in these groups of patients. Other than Chikungunya, co-infection with other viruses, such as herpes, HAV, HEV and measles, were also observed. Many case reports have shown dengue co-infection with similar viral infections.[26–30] Although the patients with co-infection, presented initially with associated clinical symptoms, it was often neglected until the onset of fever.

Dengue co-infection with other diseases like malaria, typhoid, sickle cell anaemia and urinary tract infection were also observed in the present study. Many case reports have cited concurrent dengue infection in similar patients.[22],[31],[32] Fever, myalgia and arthralgia were the most common presenting symptoms among the dengue cases. However, few cases also reported with atypical symptoms like rhinorrhoea, subconjunctival haemorrhage, retro orbital pain and dizziness with reduced vision. Other study shows that erythema, morbilliform rash, cutaneous hypersensitivity reactions as atypical presentations of dengue.[33]


  Conclusion Top


The findings from the study put to a nutshell conclude that DEN 2 was most prevalent in our region, although co-circulation of other serotypes DEN 1, 3 and 4 serotypes was also observed among the dengue cases. Apart from dengue monoinfection with single serotype, few cases also had multiple serotypes. Dengue with co-infection was found in the majority of cases followed by other viruses, bacteria and parasites. Dengue transmission starts during the pre-monsoon period, which emphasises the urgent need for developing appropriate strategies on dengue control and prevention to be implemented during the pre-monsoon period. This study has put forward the status of co-infection in dengue cases and the associated symptoms that may trigger up with unusual presentation.

As India is endemic to many diseases like typhoid, leptospirosis and enteroviral infections, which also present with fever and gastrointestinal symptoms, diagnosis of dengue in these co-infection cases presenting with a wide range of atypical symptoms was quite challenging in our study. Underreporting of co-infection of dengue along with other viral and bacterial diseases has put forth a demand for skilled clinical perspective to avoid lack of timely detection and proper management, which may lead to increased number of fatalities.

Abbreviations:

VRDL: Viral Research Diagnostic Laboratory

RMRC: Regional Medical Research Centre

HAV: Hepatitis A virus

HEV: Hepatitis E virus

FUO: Fever of unknown origin

PCR: Polymerase Chain reaction

RT-PCR: Reverse transcription

RDT: Rapid diagnostic test

CRF: Case report form

Acknowledgements

We are grateful to the departments of NVBDCP and IDSP Odisha for their support in this study. We are also thankful to ICMR-NIV for their operational support in the form of IgM testing kits. We extend our thanks to all the VRDL staff for their support and contribution towards this study.

Ethical Approval and Consent to Participate

Ethical approval for this study was taken from the state research and ethics committee and RMRC Bhubaneswar Institutional ethical committee (Approval on 14.08.21). Written consent was not taken from the cases because the researchers did not come directly in contact with the cases. The samples were received along with the filled up CRF on which the tests were done.

Financial Support and Sponsorship

Nil.

Conflicts of Interest

There are no conflicts of interest.



 
  References Top

1.
2.
3.
4.
Ganeshkumar P, Murhekar MV, Poornima V, Saravanakumar V, Sukumaran K, Anandaselvasankar A, et al. Dengue infection in India: A systematic review and meta-analysis. PLoS Negl Trop Dis 2018;12:e0006618.  Back to cited text no. 4
    
5.
Mishra S, Ramanathan R, Agarwalla SK. Clinical profile of dengue fever in children: A study from Southern Odisha, India. Scientifica (Cairo) 2016;2016:e6391594.  Back to cited text no. 5
    
6.
Rao PN, van Eijk AM, Choubey S, Ali SZ, Dash A, Barla P, et al. Dengue, chikungunya, and scrub typhus are important etiologies of non-malarial febrile illness in Rourkela, Odisha, India. BMC Infect Dis 2019;19:572.  Back to cited text no. 6
    
7.
Swain S, Bhatt M, Pati S, Soares Magalhaes RJ. Distribution of and associated factors for dengue burden in the state of Odisha, India during 2010–2016. Infect Dis Poverty 2019;8:31.  Back to cited text no. 7
    
8.
Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998;11:480-96.  Back to cited text no. 8
    
9.
Mohanty B, Sunder A, Pathak S. Clinicolaboratory profile of expanded dengue syndrome – Our experience in a teaching hospital. J Fam Med Prim Care 2019;8:1022-7.  Back to cited text no. 9
    
10.
Singh J, Dinkar A, Singh RG, Siddiqui MS, Sinha N, Singh SK. Clinical profile of dengue fever and coinfection with chikungunya. Ci Ji Yi Xue Za Zhi Tzu-Chi Med J 2018;30:158-64.  Back to cited text no. 10
    
11.
Kaur M, Singh K, Sidhu SK, Devi P, Kaur M, Soneja S, et al. Coinfection of chikungunya and dengue viruses: A serological study from North Western region of Punjab, India. J Lab Physicians 2018;10:443-7.  Back to cited text no. 11
[PUBMED]  [Full text]  
12.
Special Programme for Research and Training in Tropical Diseases, World Health Organization, editors. Dengue: Guidelines for diagnosis, treatment, prevention, and control. New ed. Geneva: TDR : World Health Organization; 2009. p. 147.  Back to cited text no. 12
    
13.
Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 1992;30:545-51.  Back to cited text no. 13
    
14.
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.  Back to cited text no. 14
    
15.
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783-91.  Back to cited text no. 15
    
16.
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20.  Back to cited text no. 16
    
17.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9.  Back to cited text no. 17
    
18.
Tomashek KM, Lorenzi OD, Andújar-Pérez DA, Torres-Velásquez BC, Hunsperger EA, Munoz-Jordan JL, et al. Clinical and epidemiologic characteristics of dengue and other etiologic agents among patients with acute febrile illness, Puerto Rico, 2012–2015. PLoS Negl Trop Dis 2017;11:e0005859.  Back to cited text no. 18
    
19.
Sigera PC, Amarasekara R, Rodrigo C, Rajapakse S, Weeratunga P, De Silva NL, et al. Risk prediction for severe disease and better diagnostic accuracy in early dengue infection; the Colombo dengue study. BMC Infect Dis 2019;19:680.  Back to cited text no. 19
    
20.
Gupta E, Dar L, Narang P, Srivastava VK, Broor S. Serodiagnosis of dengue during an outbreak at a tertiary care hospital in Delhi. Indian J Med Res 2005;121:36-8.  Back to cited text no. 20
    
21.
Padhi S, Dash M, Panda P, Parida B, Mohanty I, Sahu S, et al. A three year retrospective study on the increasing trend in seroprevalence of dengue infection from southern Odisha, India. Indian J Med Res 2014;140:660-4.  Back to cited text no. 21
[PUBMED]  [Full text]  
22.
Savargaonkar D, Sinha S, Srivastava B, Nagpal BN, Sinha A, Shamim A, et al. An epidemiological study of dengue and its coinfections in Delhi. Int J Infect Dis 2018;74:41-6.  Back to cited text no. 22
    
23.
Yergolkar PN, Tandale BV, Arankalle VA, Sathe PS, Gandhe SS, Gokhle MD, et al. Chikungunya outbreaks caused by African genotype, India. Emerg Infect Dis 2006;12:1580-3.  Back to cited text no. 23
    
24.
Edwards T, Signor LD, Williams C, Donis E, Cuevas LE, Adams ER. Co-infections with chikungunya and dengue viruses, Guatemala, 2015. Emerg Infect Dis 2016;22:2003-5.  Back to cited text no. 24
    
25.
Mercado M, Acosta-Reyes J, Parra E, Pardo L, Rico A, Campo A, et al. Clinical and histopathological features of fatal cases with dengue and chikungunya virus co-infection in Colombia, 2014 to 2015. Euro Surveill 2016;21. doi: 10.2807/1560-7917.ES.2016.21.22.30244.  Back to cited text no. 25
    
26.
Saswat T, Kumar A, Kumar S, Mamidi P, Muduli S, Debata NK, et al. High rates of co-infection of Dengue and Chikungunya virus in Odisha and Maharashtra, India during 2013. Infect Genet Evol 2015;35:134-41.  Back to cited text no. 26
    
27.
Hossain MS, Hasan MM, Islam MS, Islam S, Mozaffor M, Khan MA, et al. Chikungunya outbreak (2017) in Bangladesh: Clinical profile, economic impact and quality of life during the acute phase of the disease. PLoS Negl Trop Dis 2018;12:e0006561.  Back to cited text no. 27
    
28.
Hong TT, Toan PN, Tam PT. A case of Dengue virus and enterovirus co-infection. J Infect Dis Preve Med 2017;5:2.  Back to cited text no. 28
    
29.
Volchkova E, Umbetova K, Belaia O, Sviridova M, Dmitrieva L, Arutyunova D, et al. Co-infection of dengue fever and hepatitis A in a Russian traveler. IDCases 2016;5:67-8.  Back to cited text no. 29
    
30.
Padyana M, Karanth S, Vaidya S, Gopaldas JA. Clinical profile and outcome of dengue fever in multidisciplinary intensive care unit of a tertiary level hospital in India. Indian J Crit Care Med 2019;23:270-3.  Back to cited text no. 30
    
31.
Wiwanitkit S, Wiwanitkit V. Dengue and concurrent urinary tract infection. Asian Pac J Trop Dis 2013;3:323.  Back to cited text no. 31
    
32.
Concurrent Infection with Malaria, Dengue and Hepatitis A Virus together | Abstract [Internet]. [cited 2020 Oct 26]. Available from: https://www.longdom.org/abstract/concurrent-infection-with-malaria-dengue-and-hepatitis-a-virus-together-39821.html.  Back to cited text no. 32
    
33.
Gangasiddaiah N, Nanjundaiah N. Dengue fever: Atypical manifestation. Int J Res Med Sci 2014;2:1804.  Back to cited text no. 33
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
   
 
  Search
 
Similar in PUBMED
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
   Abstract
  Highlights
  Background
   Materials and Me...
  Results
  Discussion
  Conclusion
   References
   Article Figures
   Article Tables

 Article Access Statistics
    Viewed118    
    Printed0    
    Emailed0    
    PDF Downloaded19    
    Comments [Add]    

Recommend this journal