Home Print this page Email this page Small font size Default font size Increase font size
Users Online: 2641
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
This article has been cited by
1A plea to merge clinical and public health practices: reasons and consequences
Jean-Pierre Unger,Ingrid Morales,Pierre De Paepe,Michel Roland
BMC Health Services Research.2020;20(S2)
[DOI]
2A plea to merge clinical and public health practices: reasons and consequences
Dina Radenkovic,Alex Zhavoronkov,Evelyne Bischof
BMC Health Services Research.2021;20(S2)1
[DOI]
3The Recent Progress and Applications of Digital Technologies in Healthcare: A Review
Maksut Senbekov,Timur Saliev,Zhanar Bukeyeva,Aigul Almabayeva,Marina Zhanaliyeva,Nazym Aitenova,Yerzhan Toishibekov,Ildar Fakhradiyev,Jocelyne Fayn
International Journal of Telemedicine and Applications.2020;2020(S2)1
[DOI]
4Implementation of an Automated Sepsis Screening Tool in a Community Hospital Setting
Penny B. Cooper,Bobbi J. Hughes,George M. Verghese,J. Scott Just,Amy J. Markham
Journal of Nursing Care Quality.2021;36(2)132
[DOI]
5Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks
Natheer Khasawneh,Mohammad Fraiwan,Luay Fraiwan,Basheer Khassawneh,Ali Ibnian
Sensors.2021;21(17)5940
[DOI]
6Prediction of patient disposition: comparison of computer and human approaches and a proposed synthesis
Yuval Barak-Corren,Isha Agarwal,Kenneth A Michelson,Todd W Lyons,Mark I Neuman,Susan C Lipsett,Amir A Kimia,Matthew A Eisenberg,Andrew J Capraro,Jason A Levy,Joel D Hudgins,Ben Y Reis,Andrew M Fine
Journal of the American Medical Informatics Association.2021;28(8)1736
[DOI]
7Artificial intelligence (AI) and big data in cancer and precision oncology
Zodwa Dlamini,Flavia Zita Francies,Rodney Hull,Rahaba Marima
Computational and Structural Biotechnology Journal.2020;18(8)2300
[DOI]
8In support of “no-fault” civil liability rules for artificial intelligence
Emiliano Marchisio
SN Social Sciences.2021;1(2)2300
[DOI]
9An Overview of Artificial Intelligence Applications in Liver and Pancreatic Imaging
Nicolò Cardobi,Alessandro Dal Palù,Federica Pedrini,Alessandro Beleù,Riccardo Nocini,Riccardo De Robertis,Andrea Ruzzenente,Roberto Salvia,Stefania Montemezzi,Mirko D’Onofrio
Cancers.2021;13(9)2162
[DOI]
10An Overview of Artificial Intelligence Applications in Liver and Pancreatic Imaging
Sahar Qazi,Khalid Raza
Cancers.2021;13(9)1
[DOI]
11Machine Learning and Precision Medicine in Emergency Medicine: The Basics
Sangil Lee,Samuel H Lam,Thiago Augusto Hernandes Rocha,Ross J Fleischman,Catherine A Staton,Richard Taylor,Alexander T Limkakeng
Cureus.2021;13(9)1
[DOI]
12Artificial Intelligence in Various Medical Fields With Emphasis on Radiology: Statistical Evaluation of the Literature
Emre Pakdemirli,Urszula Wegner
Cureus.2020;13(9)1
[DOI]
13Artificial intelligence with kidney disease
Sihyung Park,Bong Soo Park,Yoo Jin Lee,Il Hwan Kim,Jin Han Park,Junghae Ko,Yang Wook Kim,Kang Min Park
Medicine.2021;100(14)e25422
[DOI]
14AI in the Intensive Care Unit: Up-to-Date Review
Diep Nguyen,Brandon Ngo,Eric vanSonnenberg
Journal of Intensive Care Medicine.2021;36(10)1115
[DOI]
15Telehealth in the time of Corona: ‘doctor in the house’
Yahia Zaki Almallah,Daniel John Doyle
Internal Medicine Journal.2020;50(12)1578
[DOI]
16Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians
Onur Asan,Alparslan Emrah Bayrak,Avishek Choudhury
Journal of Medical Internet Research.2020;22(6)e15154
[DOI]
17Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians
Joachim Hasebrook,Benedikt Hackl,Sibyll Rodde
Journal of Medical Internet Research.2020;22(6)269
[DOI]
18Myths and facts about artificial intelligence: why machine- and deep-learning will not replace interventional radiologists
Filippo Pesapane,Priyan Tantrige,Francesca Patella,Pierpaolo Biondetti,Luca Nicosia,Andrea Ianniello,Umberto G. Rossi,Gianpaolo Carrafiello,Anna Maria Ierardi
Medical Oncology.2020;37(5)269
[DOI]
19A Proposal for a Data-Driven Approach to the Influence of Music on Heart Dynamics
Ennio Idrobo-Ávila,Humberto Loaiza-Correa,Flavio Muñoz-Bolaños,Leon van Noorden,Rubiel Vargas-Cañas
Frontiers in Cardiovascular Medicine.2021;8(5)269
[DOI]
20Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review
Nishant Thakur,Hongjun Yoon,Yosep Chong
Cancers.2020;12(7)1884
[DOI]
21Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review
Joachim Hasebrook,Benedikt Hackl,Sibyll Rodde
Cancers.2020;12(7)227
[DOI]
22History of artificial intelligence in medicine
Vivek Kaul,Sarah Enslin,Seth A. Gross
Gastrointestinal Endoscopy.2020;92(4)807
[DOI]
23History of artificial intelligence in medicine
Pilla Srinivas,Divya Midhun Chakkravarthy,Debnath Battacharyya
Gastrointestinal Endoscopy.2022;92(4)249
[DOI]
24History of artificial intelligence in medicine
Olga Kubassova,Faiq Shaikh,Carlos Melus,Michael Mahler
Gastrointestinal Endoscopy.2021;92(4)1
[DOI]
25History of artificial intelligence in medicine
Angelo Dante,Alessia Marcotullio,Vittorio Masotta,Valeria Caponnetto,Carmen La Cerra,Luca Bertocchi,Cristina Petrucci,Celeste M. Alfes
Gastrointestinal Endoscopy.2021;1236(4)111
[DOI]
26Is there an app for that?
Keerthanaa Jayaraajan,Thineshkrishna Anbarasan,Chuanyu Gao
BJU International.2020;126(2)312
[DOI]
27Review of Machine Learning Technologies and Neural Networks in Drug Synergy Combination pharmacological research
Artur S. Ter-Levonian,Konstantin A. Koshechkin
Research Results in Pharmacology.2020;6(3)27
[DOI]
28Current status of clinical research using artificial intelligence techniques: A registry-based audit
SonaliRajiv Karekar,ArzanKhurshed Vazifdar
Perspectives in Clinical Research.2021;12(1)48
[DOI]
29Current status of clinical research using artificial intelligence techniques: A registry-based audit
Nguyen Khanh Hung Truong,Thuan Phuoc Nguyen,Quang Hien Kha,Ngoc Hoang Le,Van Tuan Le,Thi Cao,Ho Thanh Lam Luu,Nguyen Quoc Khanh Le,Jiunn-Horng Kang,Ruey-Feng Chang
Perspectives in Clinical Research.2021;12(1)36
[DOI]
30Toward a Sociology of Artificial Intelligence: A Call for Research on Inequalities and Structural Change
Kelly Joyce,Laurel Smith-Doerr,Sharla Alegria,Susan Bell,Taylor Cruz,Steve G. Hoffman,Safiya Umoja Noble,Benjamin Shestakofsky
Socius: Sociological Research for a Dynamic World.2021;7(1)237802312199958
[DOI]
31Toward a Sociology of Artificial Intelligence: A Call for Research on Inequalities and Structural Change
Arvind Kumar Yadav,Rohit Shukla,Tiratha Raj Singh
Socius: Sociological Research for a Dynamic World.2021;7(1)179
[DOI]
32Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers
Cheng Liu,Hang Yu
Energies.2021;14(5)1395
[DOI]
33Current Insights into Oral Cancer Diagnostics
Yee-Fun Su,Yi-Ju Chen,Fa-Tzu Tsai,Wan-Chun Li,Ming-Lun Hsu,Ding-Han Wang,Cheng-Chieh Yang
Diagnostics.2021;11(7)1287
[DOI]
34The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer
Betul Ilhan,Pelin Guneri,Petra Wilder-Smith
Oral Oncology.2021;116(7)105254
[DOI]
35Idiosyncratic Drug-Induced Liver Injury (DILI) and Herb-Induced Liver Injury (HILI): Diagnostic Algorithm Based on the Quantitative Roussel Uclaf Causality Assessment Method (RUCAM)
Rolf Teschke,Gaby Danan
Diagnostics.2021;11(3)458
[DOI]
36Idiosyncratic Drug-Induced Liver Injury (DILI) and Herb-Induced Liver Injury (HILI): Diagnostic Algorithm Based on the Quantitative Roussel Uclaf Causality Assessment Method (RUCAM)
S. Vijayalakshmi,S. Savita,S. P. Gayathri,S. Janarthanan
Diagnostics.2021;11(3)209
[DOI]
37Comparison and development of advanced machine learning tools to predict nonalcoholic fatty liver disease: An extended study
Yuan-Xing Liu,Xi Liu,Chao Cen,Xin Li,Ji-Min Liu,Zhao-Yan Ming,Song-Feng Yu,Xiao-Feng Tang,Lin Zhou,Jun Yu,Ke-Jie Huang,Shu-Sen Zheng
Hepatobiliary & Pancreatic Diseases International.2021;11(3)209
[DOI]
38Artificial intelligence in medicine creates real risk management and litigation issues
Matthew P. Keris
Journal of Healthcare Risk Management.2020;40(2)21
[DOI]
39Artificial intelligence in medical imaging practice in Africa: a qualitative content analysis study of radiographers’ perspectives
William Kwadwo Antwi,Theophilus N. Akudjedu,Benard Ohene Botwe
Insights into Imaging.2021;12(1)21
[DOI]
40Diagnosing, fast and slow
JJ Coughlan,Cormac Francis Mullins,Thomas J Kiernan
Postgraduate Medical Journal.2021;97(1144)103
[DOI]
41PROSPECTS OF AN AUTOMATED COMPUTER SOFTWARE IMPLEMENTATION FOR PREDICTION OF COURSE AND TREATMENT IN PATIENTS WITH DIFFERENT FORMS OF ODONTOGENIC MAXILLARY SINUSITIS
O. O. Voloshan,S. M. Grigorov,D. S. Demyanyk,G. P. Ruzin,K. P. Lokes
World of Medicine and Biology.2019;15(70)039
[DOI]
42Medical data science in rhinology: Background and implications for clinicians
Young Joon Jun,Joonho Jung,Heung-Man Lee
American Journal of Otolaryngology.2020;41(6)102627
[DOI]
43Medical data science in rhinology: Background and implications for clinicians
Juraj Odorcák
American Journal of Otolaryngology.2020;41(6)47
[DOI]
44Medical data science in rhinology: Background and implications for clinicians
J.-D. Zucker,K. Clément
American Journal of Otolaryngology.2021;41(6)645
[DOI]
45From multisource data to clinical decision aids in radiation oncology: The need for a clinical data science community
Joanna Kazmierska,Andrew Hope,Emiliano Spezi,Sam Beddar,William H. Nailon,Biche Osong,Anshu Ankolekar,Ananya Choudhury,Andre Dekker,Kathrine Røe Redalen,Alberto Traverso
Radiotherapy and Oncology.2020;153(6)43
[DOI]
46The automation of bias in medical Artificial Intelligence (AI): Decoding the past to create a better future
Isabel Straw
Artificial Intelligence in Medicine.2020;110(6)101965
[DOI]
47Not All Databases Are Created Equal*
Thomas L. Higgins
Critical Care Medicine.2020;48(12)1891
[DOI]
48A Guide to Accessible Artificial Intelligence and Machine Learning for the 21st Century Retina Specialist
Joshua Ong,Seenu M. Hariprasad,Jay Chhablani
Ophthalmic Surgery, Lasers and Imaging Retina.2021;52(7)361
[DOI]
49L’intelligence artificielle au service des maladies métaboliques
Jean-Daniel Zucker,Karine Clément
Médecine des Maladies Métaboliques.2021;15(1)70
[DOI]
50Applications of Artificial Intelligence (AI) for cardiology during COVID-19 pandemic
Abid Haleem,Mohd Javaid,Ravi Pratap Singh,Rajiv Suman
Sustainable Operations and Computers.2021;2(1)71
[DOI]
51Abstraction, validation , and generalization for explainable artificial intelligence
Scott Cheng-Hsin Yang,Tomas Folke,Patrick Shafto
Applied AI Letters.2021;2(1)71
[DOI]
52Abstraction, validation , and generalization for explainable artificial intelligence
Jacek Lorkowski,Agnieszka Jugowicz
Applied AI Letters.2020;1324(1)57
[DOI]
53Medical Machines: The Expanding Role of Ethics in Technology-Driven Healthcare
Connor T.A. Brenna
Canadian Journal of Bioethics.2021;4(1)107
[DOI]
54Artificial Intelligence in Acute Kidney Injury: From Static to Dynamic Models
Nupur S. Mistry,Jay L. Koyner
Advances in Chronic Kidney Disease.2021;28(1)74
[DOI]
55ARTIFICIAL INTELLIGENCE AND ITS STARRING ROLE IN DENTISTRY: A PERSPECTIVE QUESTIONNAIRE STUDY WITH REVIEW OF LITERATURE.
V. Shakuntala Soujanya. V,N.Abhishek Reddy,K. Kranthi,Vinuthna Vinuthna,Prabhakar Rao
INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH.2021;28(1)44
[DOI]
56ARTIFICIAL INTELLIGENCE AND ITS STARRING ROLE IN DENTISTRY: A PERSPECTIVE QUESTIONNAIRE STUDY WITH REVIEW OF LITERATURE.
Patrick Seitzinger,Zoher Rafid-Hamed,Jawahar Kalra
INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH.2021;263(1)16
[DOI]
57Ocular biomarkers and their role in the early diagnosis of neurocognitive disorders
Ioannis-Nikolaos Chalkias,Thomas Tegos,Fotis Topouzis,Magda Tsolaki
European Journal of Ophthalmology.2021;263(1)112067212110163
[DOI]
58Ocular biomarkers and their role in the early diagnosis of neurocognitive disorders
Andres Felipe Romero Gomez,Alvaro D. Orjuela-Canon
European Journal of Ophthalmology.2021;263(1)1
[DOI]
59Artificial Intelligence in Endodontics: Current Applications and Future Directions
Anita Aminoshariae,Jim Kulild,Venkateshbabu Nagendrababu
Journal of Endodontics.2021;47(9)1352
[DOI]
60Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes
Yaron Ilan
Frontiers in Digital Health.2020;2(9)1352
[DOI]
61Application of artificial intelligence in medical data analysis
A. I. Bursov
Almanac of Clinical Medicine.2019;47(7)630
[DOI]
62Application of artificial intelligence in medical data analysis
Khalid Raza,Khalid Maryam,Sahar Qazi
Almanac of Clinical Medicine.2021;923(7)3
[DOI]
63Artificial Intelligence for Healthcare in Africa
Ayomide Owoyemi,Joshua Owoyemi,Adenekan Osiyemi,Andy Boyd
Frontiers in Digital Health.2020;2(7)3
[DOI]
64Somatic symptoms with psychogenic or psychiatric background: Characteristics and pitfalls
Tetsuya Akaishi,Michiaki Abe,Atsuko Masaura,Junichi Tanaka,Shin Takayama,Ko Onodera,Takehiro Numata,Kota Ishizawa,Satoko Suzuki,Minoru Ohsawa,Takeshi Kanno,Tadashi Ishii
Journal of Family Medicine and Primary Care.2021;10(2)1021
[DOI]
65Improving the Event-Based Classification Accuracy in Pit-Drilling Operations: An Application by Neural Networks and Median Filtering of the Acceleration Input Signal Data
Sarahi Nicole Castro Pérez,Stelian Alexandru Borz
Sensors.2021;21(18)6288
[DOI]
66Algorithms in clinical epilepsy practice: Can they really help us predict epilepsy outcomes?
Lara Jehi
Epilepsia.2021;62(S2)6288
[DOI]
67A Multimodal Imaging–Based Deep Learning Model for Detecting Treatment-Requiring Retinal Vascular Diseases: Model Development and Validation Study
Eugene Yu-Chuan Kang,Ling Yeung,Yi-Lun Lee,Cheng-Hsiu Wu,Shu-Yen Peng,Yueh-Peng Chen,Quan-Ze Gao,Chihung Lin,Chang-Fu Kuo,Chi-Chun Lai
JMIR Medical Informatics.2021;9(5)e28868
[DOI]
68A Multimodal Imaging–Based Deep Learning Model for Detecting Treatment-Requiring Retinal Vascular Diseases: Model Development and Validation Study
Hirokazu Ito,Tetsuya Tanioka,Michael Joseph S. Diño,Irvin L. Ong,Rozzano C. Locsin
JMIR Medical Informatics.2021;9(5)e28868
[DOI]
69Artificial intelligence in overcoming rifampicin resistant-screening challenges in Indonesia: a qualitative study on the user experience of CUHAS-ROBUST
Bumi Herman,Wandee Sirichokchatchawan,Chanin Nantasenamat,Sathirakorn Pongpanich
Journal of Health Research.2021;ahead-of-print(ahead-of-print)e28868
[DOI]
70Artificial intelligence -based medical image segmentation for 3D printing and naked eye 3D visualization
Guang Jia,Xunan Huang,Sen Tao,Xianghuai Zhang,Yue Zhao,Hongcai Wang,Jie He,Jiaxue Hao,Bo Liu,Jiejing Zhou,Tanping Li,Xiaoling Zhang,Jinglong Gao
Intelligent Medicine.2021;ahead-of-print(ahead-of-print)e28868
[DOI]
71Deep Learning–Based Detection of Early Renal Function Impairment Using Retinal Fundus Images: Model Development and Validation
Eugene Yu-Chuan Kang,Yi-Ting Hsieh,Chien-Hung Li,Yi-Jin Huang,Chang-Fu Kuo,Je-Ho Kang,Kuan-Jen Chen,Chi-Chun Lai,Wei-Chi Wu,Yih-Shiou Hwang
JMIR Medical Informatics.2020;8(11)e23472
[DOI]
72Artificial intelligence in medicine and health sciences
ParameshwarR Hegde,ManjunathMala Shenoy
Archives of Medicine and Health Sciences.2021;9(1)145
[DOI]
73The Advent of Artificial Intelligence in Diabetic Foot Medicine: A New Horizon, a New Order, or a False Dawn?
Theodore Howard,Raju Ahluwalia,Nikolas Papanas
The International Journal of Lower Extremity Wounds.2021;9(1)153473462110418
[DOI]
74Selecting Correct Methods to Extract Fuzzy Rules from Artificial Neural Network
Xiao Tan,Yuan Zhou,Zuohua Ding,Yang Liu
Mathematics.2021;9(11)1164
[DOI]
Feedback
Subscribe


Subscribe this journal
Submit articles
Most popular articles
Joiu us as a reviewer
Email alerts
Recommend this journal